Inhibiting transthyretin conformational changes that lead to amyloid fibril formation.
نویسندگان
چکیده
Insoluble protein fibrils resulting from the self-assembly of a conformational intermediate are implicated as the causative agent in several severe human amyloid diseases, including Alzheimer's disease, familial amyloid polyneuropathy, and senile systemic amyloidosis. The latter two diseases are associated with transthyretin (TTR) amyloid fibrils, which appear to form in the acidic partial denaturing environment of the lysosome. Here we demonstrate that flufenamic acid (Flu) inhibits the conformational changes of TTR associated with amyloid fibril formation. The crystal structure of TTR complexed with Flu demonstrates that Flu mediates intersubunit hydrophobic interactions and intersubunit hydrogen bonds that stabilize the normal tetrameric fold of TTR. A small-molecule inhibitor that stabilizes the normal conformation of a protein is desirable as a possible approach to treat amyloid diseases. Molecules such as Flu also provide the means to rigorously test the amyloid hypothesis, i.e., the apparent causative role of amyloid fibrils in amyloid disease.
منابع مشابه
Inhibiting transthyretin amyloid fibril formation via protein stabilization.
Transthyretin (TTR) amyloid fibril formation is observed systemically in familial amyloid polyneuropathy and senile systemic amyloidosis and appears to be the causative agent in these diseases. Herein, we demonstrate conclusively that thyroxine (10.8 microM) inhibits TTR fibril formation efficiently in vitro and does so by stabilizing the tetramer against dissociation and the subsequent conform...
متن کاملDifferent disease-causing mutations in transthyretin trigger the same conformational conversion.
Transthyretin (TTR)-containing amyloid fibrils are deposited in cardiac tissue as a natural consequence of aging. A large number of inherited mutations lead to amyloid diseases by accelerating TTR deposition in other organs. Amyloid formation is preceded by a disruption of the quaternary structure of TTR and conformational changes in the monomer. To study conformational changes preceding the fo...
متن کاملTetramer dissociation and monomer partial unfolding precedes protofibril formation in amyloidogenic transthyretin variants.
Amyloid fibril formation and deposition is a common feature of a wide range of fatal diseases including spongiform encephalopathies, Alzheimer's disease, and familial amyloidotic polyneuropathies (FAP), among many others. In certain forms of FAP, the amyloid fibrils are mostly constituted by variants of transthyretin (TTR), a homotetrameric plasma protein. Recently, we showed that transthyretin...
متن کاملTransthyretin quaternary and tertiary structural changes facilitate misassembly into amyloid.
Human transthyretin (TTR) can be transformed into amyloid fibrils by partial acid denaturation to yield a monomeric amyloidogenic intermediate that self-associates into amyloid through quaternary structural intermediates, which are identified by sedimentation velocity methods. The monomeric amyloidogenic intermediate has substantial beta-sheet structure with a nonnative but intact tertiary stru...
متن کاملThe most pathogenic transthyretin variant, L55P, forms amyloid fibrils under acidic conditions and protofilaments under physiological conditions.
The L55P transthyretin (TTR) familial amyloid polyneuropathy-associated variant is distinct from the other TTR variants studied to date and the wild-type protein in that the L55P tetramer can dissociate to the monomeric amyloidogenic intermediate and form fibril precursors under physiological conditions (pH 7.0, 37 degrees C). The activation barrier associated with L55P-TTR tetramer dissociatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 22 شماره
صفحات -
تاریخ انتشار 1998